Airborne sound
Sound is caused by vibrations which transmit through a medium and reach the ear or some other form of detecting device. Sound is measured in loudness (decibels (dB)) and frequency (Hertz (Hz)).
Airborne sound (or airborne noise) is sound that is transmitted through the air.
Typically, airborne sound might be generated by:
This is as opposed to structure-borne sound that results from an impact on or a continuous vibration against a part of a building fabric resulting in sound being radiated from an adjacent vibrating surface. An example of structure-borne sound is footsteps of a floor being heard in a room below.
Whilst they are sometimes considered to be separate phenomena, airborne and structure-borne sound are related, in that airborne sound can cause structure-borne sound and vice versa. Airborne sound may cause an element of the building fabric to vibrate when it encounters a surface, and structural vibrations may radiate from a surface, generating airborne sound.
Poor detailing or poor standards of workmanship can result in airborne sound transmitting directly between spaces, for example through gaps around the edge of doors, and may result in flanking sound, where sound travels around a separating element, even though the element itself might provide exceptionally good acoustic insulation. Even exceedingly small gaps can cause a significant increase in the transmission of airborne sound.
Problems can also occur where doors, windows, or other openings face onto ‘noisy’ spaces, such as a circulation space, a busy road, or a school playground. If this deters occupants from leaving elements of the building open, this can affect the performance of natural ventilation strategies.
The amount of airborne sound in a space can be reduced by acoustic absorption, which reduces the amount of sound reflecting back into the space from the surfaces enclosing it, by acoustic insulation which reduces the amount or sound transmitting into the space from an adjacent space through the building fabric and by the elimination of gaps that might permit direct transmission.
Airborne sound transmission can be tested by placing a loudspeaker in a space to generate sound at a range of frequencies, and detecting any resulting sound in an adjacent space with a microphone. The difference is then calculated and adjustment made to take into account the sound absorption characteristics of the ‘receiving’ space. Tests are typically carried out in the range from 125 Hz to 4000 Hz.
Building Regulations Approved Document E - 'Resistance to the passage of sound' sets minimum standards for airborne sound insulation.
[edit] Related articles on Designing Buildings Wiki
- Acoustics in the workplace.
- Approved Document E.
- Audio frequency.
- Building acoustics.
- Building Bulletin 93: acoustic design of schools.
- Decibel.
- Impact sound.
- Flanking sound.
- Noise nuisance.
- Part E compliance.
- Pre-completion sound testing.
- Reverberation time.
- Robust details certification scheme.
- Room acoustics.
- Sound absorption.
- Sound frequency.
- Sound insulation.
- Sound power.
- Sound reduction index (SRI).
- Sound v noise.
- Structure-borne sound.
- Suitable insulation can help preserve the golden sound of silence.
Featured articles and news
BSRIA Statutory Compliance Inspection Checklist
BG80/2025 now significantly updated to include requirements related to important changes in legislation.
Shortlist for the 2025 Roofscape Design Awards
Talent and innovation showcase announcement from the trussed rafter industry.
OpenUSD possibilities: Look before you leap
Being ready for the OpenUSD solutions set to transform architecture and design.
Global Asbestos Awareness Week 2025
Highlighting the continuing threat to trades persons.
Retrofit of Buildings, a CIOB Technical Publication
Now available in Arabic and Chinese aswell as English.
The context, schemes, standards, roles and relevance of the Building Safety Act.
Retrofit 25 – What's Stopping Us?
Exhibition Opens at The Building Centre.
Types of work to existing buildings
A simple circular economy wiki breakdown with further links.
A threat to the creativity that makes London special.
How can digital twins boost profitability within construction?
The smart construction dashboard, as-built data and site changes forming an accurate digital twin.
Unlocking surplus public defence land and more to speed up the delivery of housing.
The Planning and Infrastructure Bill
An outline of the bill with a mix of reactions on potential impacts from IHBC, CIEEM, CIC, ACE and EIC.
Farnborough College Unveils its Half-house for Sustainable Construction Training.
Spring Statement 2025 with reactions from industry
Confirming previously announced funding, and welfare changes amid adjusted growth forecast.
Scottish Government responds to Grenfell report
As fund for unsafe cladding assessments is launched.
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.